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Lecture 4. Pipe networks: branched systems and loops

1 Branched Pipes

* Branched pipes are more complex. Here we define the concept of a node — a pointin a
network where pipes meet.

* This leads to the consideration of continuity or conservation of mass — the flows into a node
must be balanced by flows out of a node, since flow cannot accumulate (or diminish) there.

* We also adopt a sign convention, in this case that flows into the node are positive and flows
out of the node are negative.

* Rigorous application of sign conventions is one of the keys to correctly solving these types of
problems.

energy line ' "
l 2
B . \ ' f

Figure 4.1

H,

Node

Figure 4.2



* For branched pipes, one can estimate a value of head at the junction, thus allowing the head
loss in each of the pipes to be calculated, and then the flow. The flows at the junction need
to sum to zero. If they do not, revise the estimate of height at the junction and repeat. This
iterative processes can however be replaced by using the continuity equation at the node
(with an assigned sign convention!) as 4" equation to constrain the algebraic problem (see
class example);

* For design purposes, one can solve the problem by adopting an economic criterion to
constrain the solution

Economic criterion to solve the “three reservoirs” problem

Let us consider the design problem of the so called ‘three reservoirs’s problem’
(Figure 4.5). The aim is to design, i.e. calculate the best diameter set D;, D», D3 to

convoy the assumed flow rates Q,, Q., Qs, with the established head losses.

yi o VA
C

Q:|D:2 L, g y3
Qi Di L, ’ zy B y, QDsLs, B

- y=0

Figure 4.5

The piezometrics of the system can be infinite since is not known a priori the value of
the piezometric head in the node N, i.e. we don’t know the value of yn. The equation

of motion are
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NOTE: the problem is undetermined from an hydraulic point of view and has infinity

solutions in that it has four unknowns (D;, D,, D3, yn) and only three equations.

Furthermore, the continuity equation Q;=Q,*+Qs in this case is NOT useful anymore

since it declares just an identity.

To solve the problem we need to appeal to a criterion of economy in order to design
the pipelines with the minor cost. This principle provides the fourth equation that

makes determined the algebraic problem and therefore produces a unique solution.

The cost of a pipe can usually be expressed as
C=cD“L,

being ¢D* the cost per unit length which depends on the diameter D through the
coefficient ¢2>1 in order to account for the thickness augment with the diameter.

The total cost of the plant is therefore
C=C+Cr+Cs.

The three equations of motion can be expressed as a function of the unknown

diameter
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that if inserted in the cost equation gives an equation which is a function of only the
variable yn. For sake of brevity we omit here this expression, however we explain in
the following the reason of the presence of a minimum in such a cost function (Figure

4.6).
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Figure 4.6

The minimum can be calculated imposing that the first derivative of the cost function
has to be zero. The result expresses the so called ‘minimum cost equation’, which

read
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This equation has to be added to the three equations of motion in order to individuate
the solution corresponding to the set of diameters which guarantee the minimum

construction cost.



Design of Open branched networks

Let us have a look now at the scheme of Figure 4.8
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Aim: determining the best set of diameters of the main pipelines ABCDE

the requested flow rates with the established piezometric head in the last nc

Hypothesis: neglect the cost of the secondary branches at each node.

The equation of continuity has to be respected in each node, for example :

N, one has

Qi=Qx*Py,

and so on.

This is an undetermined problem in that the piezometric of the system is 1
we must therefore appeal again at the condition expressing the minimum c

Ccost.

Ah



For the node N; this condition reads
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This transitive property leads therefore to the following relation
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with A being a constant. By virtue of this relation and assuming for sake of

convenience that n=5 and a=1, the generic diameter D; becomes

Di:a3\/§i,

where a = /4 .



In order to proceed we observe now that the total head loss has to be equal to the sum

of the single head losses over each reach of length L; and diameter D;
Ah=Ah + Ahy + Ahy + ...+ Ah,,
1e.

Q1 ﬂ Qz ﬁ Q3 ﬁ QN
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Supposing now to neglect the little difference in the coefficients of roughness 3, even
if they should be a rigori a function of the unknown diameters and introducing the

relation obtained for the diameters, we have
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The previous relation allows to calculate the coefficient £ as a function of known

quantities
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Z Qi%Lz

k =

This very important result allows one to calculate the single head losses
corresponding to the condition of max economy, i.e minimum construction cost, over

each reach. It has to be stressed the fact that in doing this we still do not known the

best set of diameters that realize this condition.




After having calculated the single head losses over each reach one can now calculate

the corresponding diameter that realizes that situation
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Loops

In fact (as we have already seen in the Powerpoint shown in class) real supply systems
involve loops.

This presents a problem for analysis.

This is of course generally done by computer (see for example the range of products at
http://www.innovyze.com/).

Some years ago there was a package called WATNET for water distribution networks which
was ultimately subsumed into commercial products. Now however there is another WATNET
here https://sites.google.com/site/drissamnouiri/watnet-software which | have not tested

but would be worth a look. It appears to be free.

We need to understand the basis for computational solutions.

These tend to be based on the Loop or Head Balance Method.

The basic principle is that in a loop such as that shown in the figure below, the sum of the
head losses around the loop must be zero.

This stands to reason as if you follow a flow around a loop, you cannot have a ‘step’ in head
at any node.
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We thus need to satisfy

m
Z hfl == 0
i=1

Equation 1

Around m pipes.

We adopt another sign convention, which is usually flows clockwise around a loop are
positive.

Failure to apply the sign convention rigorously is the most common source of student error
in solving this sort of problem!

The Hardy-Cross Method

The best known method for solving Equation 1 derives from Hardy Cross in 1936. Hardy
Cross was a professor at University of lllinois at Urbana-Chamaign and also invented the
moment distribution method for structural analysis, which has a certain amount in common
with his method for pipe loops.
This method depends on knowing the inflows and outflows for a loop, and determines the
values of head at intermediate nodes and the flow in each pipe.
It works as follows:

1. assume values of g; to satisfy ), q; = 0.

2. calculate hy; from g;(using any suitable method for calculating head loss, usually A).

3. IfY hfi = 0, then the solution is correct.

4, IfYy hs; # 0, then apply a correction to q; factor and return to step 2

The trick is of course to calculate the correction factor to apply, which is done as follows.

Hardy Cross Correction Factor

Since:
_ fLu?
T~ 29D
We can say for a given pipe:
hs = kQ?

Where k is a constant.
If we esstimate a flow in pipe i inaccurately as q;, we can say that the true flow is:

Q = (q; +69)
We can calculate a head loss from our calculated flow:
hyi = kqf

But the true head loss is then:



Hp; = k(g; + 6q)*
* We can then expand this according to the Binomial Theorem:
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* Ignoring terms of second order or higher, which will be very small for 6q; << g;, we have:
1)
Hp; = kqf [1 +22
qi

* Also, for a loop, we must satisfy:
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5 Example

* The Hardy Cross method is best explained by way of examples.
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Figure 2

* The figure above shows a simple loop with stated (in black) the known inflow at point A and
the outflows (water demand) at points B to D.
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In this example all the pipes are 1000 m long. AB and DA have a diameter of 150 mm whilst
BC and CD have a diameter of 125 mm. All have a k; of 0.03 mm.

The first stage of the calculation is to assume flows in the pipes AB, BC, CD and DE.

It does not matter what flows are assumed provided they are consistent with the known
inflows and outflows.

Also, the sign convention (clockwise flows are positive) must be observed.

The initial estimate for this example is shown in red on the figure.

We set up a tabulation of the results and calculate the flow velocities from the estimated
flows and pipe diameters:

Pipe | ai(m’/s) | L(m) D(m) | u(m/s) | hs(m) ha/q;
AB 0.06 1000 0.150 3.40

BC 0.04 1000 0.125 3.26

cD 0 1000 0.125 0

DA 20.04 1000 0.150 2.26

The next stage is to calculate the head loss for each pipe based on u, L and D, using any
suitable method such as finding A.

hs goes in the penultimate column.

Note that if the flow is negative in the sign convention, the head loss is negative (i.e. it is a
head gain!) too.

Note also that the numbers in this example are not especially realistic — the head losses are

massive.
Pipe | ai(m’/s) | L(m) D(m) | u(m/s) | hs(m) ha/q;
AB 0.06 1000 0.150 3.40 59.58
BC 0.04 1000 0.125 3.26 68.32
cD 0 1000 0.125 0 0
DA -0.04 1000 0.150 226| -28.14

Then the calculated head loss is divided by the flow estimate from the second column to
give the number in the final column (enter zero if the flow is zero, bearing in mind that in a
spreadsheet calculation, which is basically a good way to do this, there will be a divide by
zero error you will have to trap):

Pipe | aqi(m®/s) | L(m) D(m) | u(m/s) | ha(m) | he/a;

AB 0.06 1000 | 0.150 340 | ,59.58 | 992.97
NS iy

BC 0.04 | \_1000 0.125 3.26 | ‘|68, 1707.94

cD 0 100 0.125 ol 1 o 0

DA -0.04 1000\ 0.150 2261 -28.14| 703.49
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This is given by this divided by

this

Note the minus signs cancel in

the division




We now work out the correction factor which involves summing each of the last two

columns:
Pipe | ai(m’/s) | L(m) D(m) | u(m/s) | hs(m) ha/q;
AB 0.06 1000 0.150 3.40 59.58 | 992.97
BC 0.04 1000 0.125 3.26 68.32 | 1707.94
cD 0 1000 0.125 0 0 0
DA -0.04 1000 0.150 226| -28.14| 703.49
5= 99.76  3404.40

The two sums go into the correction factor calculation:

éq

B 2 hy

99.76

2
ZQi

hri  2x3404.40

The correction factor is then added to the original estimate of flow for every pipe in the
system. For example the new flow in AB becomes 0.06 +-0.015 = 0.045, and the calculation
re-worked:

Pipe | ai(m’/s) | L(m) D(m) | u(m/s) | hs(m) ha/q;
AB 0.045 1000 0.150 2.57 35.49 | 782.69
BC 0.025 1000 0.125 2.07 29.38 | 1159.01
cD 0.015 1000 0.125 119 | -10.66| 727.30
DA -0.055 1000 0.150 3.09| -50.13| 917.20

5= 4.09 3586.20

This time 6q comes out as -0.001.

The process continues until the sum of the penultimate column, Zhy is close to zero and the
correction factor is negligibly small. Usually three or four iterations are sufficient to achieve
this in simple loops — in fact the second iteration just above is pretty close already.

Complex Loops and Example

More complex loops can still be solved in this way, for example that in the figure below. The
inflows, outflows and initial estimates of the flow in the pipes have already been added
(though they are shown in litres/s here).
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Figure 3

The subtlety here is that pipe 2 appears in both loops, but with its flows having opposite
signs: the left hand loop flow in pipe 2 is clockwise so positive, but in the right hand loop the
same flow in this pipe has to be considered negative as it is anti-clockwise from the
perspective of this loop.

We set up a double tabulation, as shown below, but work the calculation in basically the
same way.

Consider all pipes to be 1000 m long, 100 mm in diameter and have a k; of 0.03 mm.

Left Hand Loop Right Hand Loop
Pipe Qi hsi (m) he/q;i Pipe Qi hsi (m) he/qi
(litres/s) (litres/s)

1 40 28.5 0.71 5 40 28.5 0.71
2 0 L 0 0 6 0 0 0
3 -10 -2.2 0.22 2 0 0 0
4 -20 <8 0.40 f

2= 18.3 1.33 2= 28.5 0.71

These two must always be equal and
opposite — same pipe in the two
loops, but opposite sign conventions

It will hopefully be obvious that we now calculate two correction factors, one for each loop:
69 (left hand) =-6.87 and &q (right hand) = -20

We then apply each correction factor to the flow estimates for its own loop, so the new flow
in pipe 1is as follows:

40 + - 6.87 = 33.1 litres/s
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Whilst that for pipe 5 is:
40 +-20 = 20.0 litres/s

BUT (and this is the tricky part) pipes that appear in both loops have both correction factors
applied, taking into account the sign convention. So, the new flow for pipe 2 in the left hand
loop becomes:

0 +-6.87 --20 = 13.1 litres/s
Whilst that for pipe 2 in the right hand loop is:
0+-20--6.87 =-13.1 litres/s

Which is of course still equal and opposite to its equivalent in the left hand loop where the
sign convention dictates its flow has the opposite sign.

The calculation continues as before until the sum of the head losses around the loops
becomes small and the correction factors negligible.

7 Nodal or Quantity Balance Method

The head balance method outlined above only works if the inflow and outflow quantities are
known. If, as is quite possible, the heads at the inflow and outflow points are known, but not
the flows, another approach is necessary. This is the quantity balance method.

It is derived, and works in a similar way, but instead of heads being summed around a loop,
the flows at each node are summed. If they are not zero, correction factors are calculated
from:

8 Example

A good example of the nodal method is to re-work the previous branched pipes example
using a tabular approach. This is done in class.

For systems with many nodes, the iteration involved becomes complex as an answer must
be converged at each node before moving to the next, and then once all nodes have been
done the calculation must restart at the first node, until changes become insignificant. | have
a spreadsheet example of such a calculation, but it is not sensible to do it by hand
calculation.
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